Trigonometry
Right-angled triangle is a triangle in which one angle is a right angle, i.e. a 90-degree angle.
Hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. Two other sides are called legs of the triangle .
Let's choose any non-right angle α of the triangle, then
- the sine of this angle is the ratio of the opposite side to the hypotenuse, denoted as sin(α)
- the cosine of this angle is the ratio of the adjacent leg to the hypotenuse, denoted as cos(α)
- the tangent of this angle is the ratio of the opposite leg to the adjacent leg, denoted as tg(α) or tan(α)
There are reciprocals of these functions:
- cosecant: csc(α) = 1/cos(α)
- secant: sec(α) = 1/cos(α)
- cotangent: cot(α) = 1/tg(α)
constants
The number π is a mathematical constant defined as the ratio of a circle's circumference to its diameter.
π = 3.14159
The number e or Euler's number is a mathematical constant defined as limit of (1 + 1/n)n where n approaches infinity.
e = 2.71828
radians
The radian is the unit for measuring angles. Denoted by the symbol rad
An angle of one radian subtended from the center of a unit circle produces an arc with arc length 1.
There is a formula for the correlation of degrees and radians:
360° = 2 * π rad
basic formulas
sin2(α) + cos2(α) = 1
tan(α)*ctg(α) = 1
tan(α) = sin(α)/cos(α)=1/ctg(α)
1+tan2(α) = 1/cos2(α) = sec2(α)
ctg(α) = cos(α)/sin(α) = 1/tg(α)
1+ctg2(a) = 1/sin2(α) = cosec2(α)
sec(α)=1/cos(α)
cosec(α)=1/sin(α)
angle sum
sin(α±β) = sin(α)cos(β)±cos(α)sin(β)
cos(α+β) = cos(α)cos(β)-sin(α)sin(β)
cos(α-β) = cos(α)cos(β)+sin(α)sin(β)
tan(α+β) = (tan(α)+tan(β))/(1-tan(α)tan(β))
= (ctg(α)+ctg(β))/(ctg(α)ctg(β)-1)
tan(α-β) = (tan(α)-tan(β))/(1+tan(α)tan(β))
= (ctg(β)-ctg(α))/(ctg(α)ctg(β)+1)
ctg(α+β) = (ctg(α)ctg(β)-1)/(ctg(α)+ctg(β))
= (1-tan(α)tan(β))/(tan(α)+tan(β))
ctg(α-β) = (ctg(α)ctg(β)-1)/(ctg(β)-ctg(α))
= (1+tan(α)tan(β))/(tan(α)-tan(β))
double angle
sin(2α) = 2sin(α)cos(α) = 2tan(α) / (1+tan2(α))
cos(2α) = cos2(α) - sin2(α)
= 2cos2(α) - 1
= 1 - 2sin2(α)
= (1 - tan2(α)) / (1+tan2(α))
= (ctg(α) - tan(α)) / (ctg(α) + tan(α))
tan(2α) = 2tan(α) / (1 - tan2(α))
There is the Chebyshev method for finding the nth multiple angle formula.
signs in quarters
quater | sin | cos | tg | ctg | sec | cosec |
---|---|---|---|---|---|---|
I | + | + | + | + | + | + |
II | + | - | - | - | - | + |
III | - | - | + | + | - | - |
IV | - | + | - | - | + | - |
parity and periods formulas
arg | sin | cos | tan | ctg | sec | cosec |
---|---|---|---|---|---|---|
-α 2π-α | -sin(α) | cos(α) | -tan(α) | -ctg(α) | sec(α) | -cosec(α) |
0.5π-α 0.5π+α | cos(α) | -sin(α) sin(α) | -ctg(α) ctg(α) | -tan(α) tan(α) | -cosec(α) cosec(α) | sec(α) |
1.5π+α 1.5π-α | -cos(α) | sin(α) -sin(α) | -ctg(α) ctg(α) | -tan(α) tan(α) | cosec(α) -cosec(α) | -sec(α) |
product to sum formulas
2cos(α)cos(β) = cos(α-β) + cos(α+β)
2sin(α)sin(β) = cos(α-β) + cos(α+β)
2sin(α)cos(β) = sin(α+β) + sin(α-β)
2cos(α)sin(β) = sin(α+β) - sin(α-β)
tan(α)tan(β) = ( cos(α-β) - cos(α+β)) / ( cos(α-β) + cos(α+β))
sum to product formulas
sin(α) + sin(β) = 2sin((α+β)/2)cos((α-β)/2)
sin(α) - sin(β) = 2sin((α-β)/2)cos((α+β)/2)
cos(α) + cos(β) = 2cos((α+β)/2)cos((α-β)/2)
cos(α) - cos(β) = -2sin((α+β)/2)cos((α-β)/2)
Euler's formula
In following formula i is imaginary unit.
ei*x = cos(x) + i*sin(x)
sin(x) = (eix - e-ix) / 2i
cos(x) = (eix + e-ix) / 2
tan(x) = (e-ix - eix) / (eix + e-ix)